About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2020
Conference paper
Finite-Sample Analysis of Contractive Stochastic Approximation Using Smooth Convex Envelopes
Abstract
Stochastic Approximation (SA) is a popular approach for solving fixed-point equations where the information is corrupted by noise. In this paper, we consider an SA involving a contraction mapping with respect to an arbitrary norm, and show its finite-sample error bounds while using different stepsizes. The idea is to construct a smooth Lyapunov function using the generalized Moreau envelope, and show that the iterates of SA have negative drift with respect to that Lyapunov function. Our result is applicable in Reinforcement Learning (RL). In particular, we use it to establish the first-known convergence rate of the V-trace algorithm for off-policy TD-learning [18]. Importantly, our construction results in only a logarithmic dependence of the convergence bound on the size of the state-space.