About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Discrete Mathematics
Paper
Finding subsets maximizing minimum structures
Abstract
We consider the problem of finding a set of k vertices in a graph that are in some sense remote. Stated more formally, given a graph G and an integer k, find a set P of k vertices for which the total weight of a minimum structure on P is maximized. In particular, we are interested in three problems of this type, where the structure to be minimized is a spanning tree (REMOTE-MST), Steiner tree, or traveling salesperson tour. We study a natural greedy algorithm that simultaneously approximates all three problems on metric graphs. For instance, its performance ratio for REMOTE-MST is exactly 4, while this problem is N P-hard to approximate within a factor of less than 2. We also give a better approximation for graphs induced by Euclidean points in the plane, present an exact algorithm for graphs whose distances correspond to shortest-path distances in a tree, and prove hardness and approximability results for general graphs.