Publication
Physical Review Letters
Paper

Fermi-Dirac distribution of excitons in coupled quantum wells

View publication

Abstract

Time-resolved and cw photoluminescence of excitons in coupled quantum wells with an applied electric field is modeled using a Fermi-Dirac distribution. This distribution can result from inhomogeneous broadening due to interface roughness and the strong, short-range electric dipole repulsion between excitons. The model quantitatively explains the striking temperature dependence of the luminescence linewidth and peak position previously interpreted as a phase transition to an ordered state [T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett. 64, 3066 (1990)]. At very low temperatures (6 K), the excitons are in a metastable distribution. © 1991 The American Physical Society.

Date

Publication

Physical Review Letters

Authors

Share