About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2022
Workshop
Federated Continual Learning with Differentially Private Data Sharing
Abstract
In Federated Learning (FL) many types of skews can occur, including uneven class distributions, or varying client participation. In addition, new tasks and data modalities can be encountered as time passes, which leads us to the problem domain of Federated Continual Learning (FCL). In this work we study how we can adapt some of the simplest, but often most effec- tive, Continual Learning approaches based on replay to FL. We focus on temporal shifts in client behaviour, and show that direct application of replay methods leads to poor results. To address these shortcomings, we explore data sharing between clients employing differential privacy. This alleviates the shortcomings in current baselines, resulting in performance gains in a wide range of cases, with our method achieving maximum gains of 49%.