About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2017
Conference paper
FeaBoost: Joint feature and label refinement for semantic segmentation
Abstract
We propose a novel approach, called FeaBoost, to image semantic segmentation with only image-level labels taken as weakly-supervised constraints. Our approach is motivated from two evidences: 1) each superpixel can be represented as a linear combination of basic components (e.g., predefined classes); 2) visually similar superpixels have high probability to share the same set of labels, i.e., they tend to have common combination of predefined classes. By taking these two evidences into consideration, semantic segmentation is formulated as joint feature and label refinement over superpixels. Furthermore, we develop an efficient FeaBoost algorithm to solve such optimization problem. Extensive experiments on the MSRC and LabelMe datasets demonstrate the superior performance of our FeaBoost approach in comparison with the state-of-the-art methods, especially when noisy labels are provided for semantic segmentation.