About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICSLP 2004
Conference paper
Fast SEMI-automatic semantic annotation for spoken dialog systems
Abstract
This paper describes a bootstrapping methodology for semiautomatic semantic annotation of a "mini-corpus" that is conventionally annotated manually to train an initial parser used in natural language understanding (NLU) systems. We propose to cast the problem of semantic annotation as a classification problem: each word is assigned a unique set of semantic tag(s) and/or label(s) from the universal tag/label set. This approach enables "local" semantic annotation resulting in partially annotated sentences. The proposed method reduces the annotation time and cost that forms a major bottleneck in the development of NLU systems. We present a set of experiments conducted on the medical domain "mini-corpus" that contains 10K hand-annotated sentences. Three annotation methods are compared: parser (baseline), similarity and classification-based annotations. The support vector machine (SVM) based classification scheme is shown to outperform both similarity and parsed-based annotation.