A. Ney, R. Rajaram, et al.
Journal of Magnetism and Magnetic Materials
Using angle-resolved photoemission from Zn (0001) we observe that the Zn 3d states exhibit energy-band dispersion (0.17 eV from Γ6+ to Γ5- for the upper d band) and k-dependent polarization selection rules. The d bands are centered at 10 eV below the Fermi energy EF and are 1.0 eV wide (Γ4- to Γ5-). In contrast, ab initio band calculations using a Hedin-Lundqvist potential yield d bands centered at ∼8.3 eV below EF that are 1.5 eV wide and disperse by 0.33 eV, thus indicating the significance of self-energy corrections for these deep-lying narrow bands. Upon empirically correcting the d-band position by adjusting the exchange parameter α in a nonrelativistic Xα calculation, the calculated bandwidth (1.0 eV) and dispersion are also in agreement with experiment. Experimental critical points are (energies relative to EF): Γ5-=-9.60 eV, Γ6+=-9.77 eV, Γ6-=-10.05 eV, - 10.30 eV, Γ5+=-10.05 eV, - 10.31 eV, Γ4-=-10.62 eV. The observed initial-state lifetime broadening (full width of half maximum) is 0.3 eV at the top of the d bands and 0.5 eV at the bottom of the d bands. © 1980 The American Physical Society.
A. Ney, R. Rajaram, et al.
Journal of Magnetism and Magnetic Materials
A. Reisman, M. Berkenblit, et al.
JES
Imran Nasim, Melanie Weber
SCML 2024
G. Will, N. Masciocchi, et al.
Zeitschrift fur Kristallographie - New Crystal Structures