About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICHI 2019
Conference paper
EXITs: An Ensemble Approach for Imputing Missing EHR Data
Abstract
Missing data points are prevalent in electronic health records (EHRs) and are an impedance to utilizing machine learning for predictive and classification tasks in healthcare. For this challenge, we developed eXITs-A stacked ensemble learner that employs 6 base models to perform imputation on time series data from 13 different laboratory tests across 8, 267 patients in the MIMIC-III database provided in the ICHI 2019 Data Analytics Challenge on Missing Data Imputation (DACMI). The results show that our ensemble model (avg. nRMSE = 0.200) outperforms the reference model, 3D-MICE (avg. nRMSE = 0.222) by 9.69%.