Paul J. Steinhardt, P. Chaudhari
Journal of Computational Physics
We use the method of probability-weighted moments to derive estimators of the parameters and quantiles of the generalized extreme-value distribution. We investigate the properties of these estimators in large samples, via asymptotic theory, and in small and moderate samples, via computer simulation. Probability-weighted moment estimators have low variance and no severe bias, and they compare favorably with estimators obtained by the methods of maximum likelihood or sextiles. The method of probability-weighted moments also yields a convenient and powerful test of whether an extreme-value distribution is of Fisher-Tippett Type I, II, or III. © 1985 Taylor & Francis Group, LLC.
Paul J. Steinhardt, P. Chaudhari
Journal of Computational Physics
T. Graham, A. Afzali, et al.
Microlithography 2000
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
Fernando Martinez, Juntao Chen, et al.
AAAI 2025