About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IUI 2012
Conference paper
EPIC: A multi-tiered approach to enterprise email prioritization
Abstract
We present Enterprise Priority Inbox Classifier (EPIC), an automatic personalized email prioritization system based on a topic-based user model built from the user's email data and relevant enterprise information. The user model encodes the user's topics of interest and email processing behaviors (e.g. read/reply/file) at the granularity of pair-wise interactions between the user and each of his/her email contacts. Given a new message, the user model is used in combination with the message metadata and content to determine the values of a set of contextual features. Contextual features include peoplecentric features representing information about the user's interaction history and relationship with the email sender, as well as message-centric features focusing on the properties of the message itself. Based on these feature values, EPIC uses a dynamic strategy to combine a global priority classifier with a user-specific classifier for determining the message's priority. An evaluation of EPIC based on 2,064 annotated email messages from 11 users, using 10-fold cross-validation, showed that the system achieves an average accuracy of 81.3%. The user-specific classifier contributed an improvement of 11.5%. Lastly we report on findings regarding the relative value of different contextual features for email prioritization. Copyright © 2012 ACM.