Numer. Linear Algebra. Appl.

Enhanced algebraic substructuring for symmetric generalized eigenvalue problems

View publication


This article proposes a new substructuring algorithm to approximate the algebraically smallest eigenvalues and corresponding eigenvectors of a symmetric positive-definite matrix pencil (Formula presented.). The proposed approach partitions the graph associated with (Formula presented.) into a number of algebraic substructures and builds a Rayleigh–Ritz projection subspace by combining spectral information associated with the interior and interface variables of the algebraic domain. The subspace associated with interior variables is built by computing substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated with interface variables is built by computing eigenvectors and associated leading derivatives of linearized spectral Schur complements. The proposed algorithm can take advantage of multilevel partitionings when the size of the pencil. Experiments performed on problems stemming from discretizations of model problems showcase the efficiency of the proposed algorithm and verify that adding eigenvector derivatives can enhance the overall accuracy of the approximate eigenpairs, especially those associated with eigenvalues located near the origin.


17 Oct 2022


Numer. Linear Algebra. Appl.