About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICLR 2021
Workshop paper
Engineering Fair Machine Learning Pipelines
Abstract
Data splits and data preparation during fairness mitigation are known to influence the performance of output models. We propose including protected attributes in stratification when splitting a dataset. We also describe fairness patterns for assembling fair pipelines that include data preparation, estimators, and mitigators. This paper introduces an open-source Python library lale.lib.aif360 that offers sklearn compatible implementations of fair stratification and fairness patterns.