About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2016
Conference paper
Embedding lexical features via low-rank tensors
Abstract
Modern NLP models rely heavily on engineered features, which often combine word and contextual information into complex lexical features. Such combination results in large numbers of features, which can lead to overfitting. We present a new model that represents complex lexical features - comprised of parts for words, contextual information and labels - in a tensor that captures conjunction information among these parts. We apply low-rank tensor approximations to the corresponding parameter tensors to reduce the parameter space and improve prediction speed. Furthermore, we investigate two methods for handling features that include n-grams of mixed lengths. Our model achieves state-of-the-art results on tasks in relation extraction, PP-attachment, and preposition disambiguation.