About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ED
Paper
Electrical resistivity of liquid Ge2Sb2Te5 based on thin-film and nanoscale device measurements
Abstract
The electrical resistivity of liquid Ge2Sb2 Te 5 (GST) is obtained from dc-voltage measurements performed on thin GST films as well as from device-level microsecond-pulse voltage and current measurements performed on two arrays (thicknesses: 20 ± 2 nm and 50 ± 5 nm) of lithographically defined encapsulated GST nano-/microwires (length: 315 to 675 nm; width: 60 to 420 nm) with metal contacts. The thin-film measurements yield 1.26±0.15mΩ̇cm$ (thicknesses: 50, 100, and 200 nm); however, there is significant uncertainty regarding the integrity of the film in liquid state. The device-level measurements utilize the melting of the encapsulated structures by a single voltage pulse while monitoring the current through the wire. The melting is verified by the stabilization of the current during the pulse. The resistivity of liquid GST is extracted as 0.31 ± 0.04 and 0.21±0. 03mΩ̇cm from 20-and 50-nm-thick wire arrays. © 1963-2012 IEEE.