About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IPDPS 2009
Conference paper
Elastic scaling of data parallel operators in stream processing
Abstract
We describe an approach to elastically scale the performance of a data analytics operator that is part of a streaming application. Our techniques focus on dynamically adjusting the amount of computation an operator can carry out in response to changes in incoming workload and the availability of processing cycles. We show that our elastic approach is beneficial in light of the dynamic aspects of streaming workloads and stream processing environments. Addressing another recent trend, we show the importance of our approach as a means to providing computational elasticity in multicore processor-based environments such that operators can automatically find their best operating point. Finally, we present experiments driven by synthetic workloads, showing the space where the optimizing efforts are most beneficial and a radioastronomy imaging application, where we observe substantial improvements in its performance-critical section. © 2009 IEEE.