About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
UAI 2005
Conference paper
Efficient test selection in active diagnosis via entropy approximation
Abstract
We consider the problem of diagnosing faults in a system represented by a Bayesian network, where diagnosis corresponds to recovering the most likely state of unobserved nodes given the outcomes of tests (observed nodes). Finding an optimal subset of tests in this setting is intractable in general. We show that it is difficult even to compute the next most-informative test using greedy test selection, as it involves several entropy terms whose exact computation is intractable. We propose an approximate approach that utilizes the loopy belief propagation infrastructure to simultaneously compute approximations of marginal and conditional entropies on multiple subsets of nodes. We apply our method to fault diagnosis in computer networks, and show the algorithm to be very effective on realistic Internet-like topologies. We also provide theoretical justification for the greedy test selection approach, along with some performance guarantees.