About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Duty cycle measurement and correction using a random sampling technique
Abstract
A specific value of duty cycle of an on-chip clock or signal often becomes of extreme significance in VLSI circuits like D RAM's, dynamic/domino pipelined circuits, pipelined analog-to-digital converters (ADC) and Serializer / Deserializer (SERBES) circuits, which are sensitive to the duty cycle or where operations are synchronized with both transitions of the clock. This paper introduces a novel idea based on a random sampling technique of inferential statistics for measurement and local correction of the duty cycle of high-speed on-chip signals. The high measurement accuracy achievable through the proposed random sampling technique provides a way to correct the duty cycle with a maximum error of less than half the smallest delay resolution unit available for correction. An input signal with duty cycle from 30% to 70% can be adjusted to a wide range of values within this range using a purely digital, area-efficient standard cell based design. Our experimental results gathered though extensive simulations of the proposed circuit manifest a very close correlation to the expected theoretical results. © 2005 IEEE.