Bong-Sub Lee, Robert M. Shelby, et al.
Journal of Applied Physics
The nanoscale crystal nuclei in an amorphous Ge2Sb 2Te5 bit in a phase change memory device were evaluated by fluctuation transmission electron microscopy. The quench time in the device (∼10 ns) afforded more and larger nuclei in the melt-quenched state than in the as-deposited state. However, nuclei were even more numerous and larger in a test structure with a longer quench time (∼100 ns), verifying the prediction of nucleation theory that slower cooling produces more nuclei. It also demonstrates that the thermal design of devices will strongly influence the population of nuclei, and thus the speed and data retention characteristics. © 2014 AIP Publishing LLC.
Bong-Sub Lee, Robert M. Shelby, et al.
Journal of Applied Physics
Yi-Chou Chen, Yuyu Lin, et al.
ICSICT 2008
Dmitry Shakhvorostov, Razvan A. Nistor, et al.
PNAS
Matthias Wuttig, Simone Raoux
Zeitschrift fur Anorganische und Allgemeine Chemie