About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLDB 2020
Conference paper
Distributed Edge Partitioning for Trillion-edge Graphs
Abstract
We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructed in parallel by greedily expanding its edge set from a single vertex in such a way that the increase of the vertex cuts becomes local minimal. We theoretically prove that the proposed method has the upper bound in the partitioning quality. The empirical evaluation with various graphs shows that the proposed method produces higher-quality partitions than the state-of-the-art distributed graph partitioning algorithms. The performance evaluation shows that the space efficiency of the proposed method is an order-of-magnitude better than the existing algorithms, keeping its time efficiency comparable. As a result, Distributed NE can partition a trillion-edge graph using only 256 machines within 70 minutes.