About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Big Data 2014
Conference paper
Distributed adaptive importance sampling on graphical models using MapReduce
Abstract
In the case of a graphical model, machine learning algorithms used to evaluate a query can be broadly classified into exact and approximate inference algorithms. Exact inference algorithms use only network parameters to evaluate a query. However, these algorithms are typically intractable on large networks due to exponential time and space complexity. Approximate inference algorithms are widely used in practice to overcome this constraint, with a trade-off in accuracy. It includes sampling and propagation-based algorithms. These approximate algorithms may also suffer from scalability issues if applied on large networks, for achieving higher accuracy. To address this challenge, we have designed and implemented several MapReduce-based distributed versions of a specific type of approximate inference algorithm called Adaptive Importance Sampling (AIS). We compare and evaluate the proposed approaches using benchmark networks. Experimental results show that our proposed approaches achieve significant scaleup and speedup compared to the sequential method, while achieving similar accuracy asymptotically.