About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
HICSS 2020
Conference paper
Automating cyberdeception evaluation with deep learning
Abstract
A machine learning-based methodology is proposed and implemented for conducting evaluations of cyberdeceptive defenses with minimal human involvement. This avoids impediments associated with deceptive research on humans, maximizing the efficacy of automated evaluation before human subjects research must be undertaken. Leveraging recent advances in deep learning, the approach synthesizes realistic, interactive, and adaptive traffic for consumption by target web services. A case study applies the approach to evaluate an intrusion detection system equipped with application-layer embedded deceptive responses to attacks. Results demonstrate that synthesizing adaptive web traffic laced with evasive attacks powered by ensemble learning, online adaptive metric learning, and novel class detection to simulate skillful adversaries constitutes a challenging and aggressive test of cyberdeceptive defenses.