Device characteristics of single-layer graphene FETs grown on copper
Abstract
The exceptional electrical properties of graphene materials have led to an explosion of research investigating the potential of graphene as the foundation for a future generation of devices as well as developing methods of producing high quality graphene materials. Material quality and our ability to manipulate the properties of graphene will ultimately determine the success of graphene as a device platform. Recently, the formation of single layer graphene via catalyzed-chemical vapor deposition (CVD) on copper foils has generated much interest [1]. A few groups have reported the CVD growth of graphene on copper, and transport properties including quantum Hall effect [2,3] in layers subsequently transferred to insulating substrates. However, there have been no careful studies of FETs fabricated from them. In this work, we report the characteristics of single-layer graphene FETs whose channels were grown by CVD on copper. © 2010 IEEE.