About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2018
Conference paper
Democratization of deep learning using Darviz
Abstract
With an abundance of research papers in deep learning, adoption and reproducibility of existing works becomes a challenge. To make a DL developer life easy, we propose a novel system, DARVIZ, to visually design a DL model using a drag-and-drop framework in an platform agnostic manner. The code could be automatically generated in both Caffe and Keras. DARVIZ could import (i) any existing Caffe code, or (ii) a research paper containing a DL design; extract the design, and present it in visual editor.