About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Symposium on M3D 1991
Conference paper
Damping mechanisms in thin-layer materials
Abstract
In addition to applications in engineering, the intrinsic mechanical damping of materials is important as a research tool. This is a consequence of the astonishing variety of mechanisms that produce damping, many of which provide a means of selectively probing structural features and kinetic processes on the atomic scale. In the study of thin-layer materials, the mechanisms of greatest interest are relaxation processes associated with the thermally-activated motion of defects and that are manifest experimentally as well-defined damping peaks. Examples are given of relaxations that operate on the macroscopic, microstructural, and atomic scales. These are taken from work on long- and short-range diffusion of hydrogen in amorphous alloys, grain-boundary sliding in metallic films, and point-defect reorientation in doped layers of silicon. New experimental approaches using the vibrating-membrane and vibrating-string configurations have been developed, and complexities associated with the mechanics of these arrangements are pointed out.