About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INFORMS 2023
Invited talk
Counterfactual-driven Prescriptive Tree
Abstract
In this talk, we present a framework to learn interpretable optimal policy from observational data. The proposed framework consists of a causal teacher model which produces counterfactual outcomes corresponding to different treatment actions, and a prescriptive student model which distills a set of optimized policies in the form of a tree. We show the resulting prescriptive tree can be learned greedily for swift deployment. As the greedy heuristic is unable to incorporate constraints that are often critical for enterprise applications, we introduce a scalable mixed-integer program that solves the constrained policy prescription problem via column generation. We will highlight the results from an online test that shows a 7% increase in revenue over the legacy pricing benchmark, where we applied this solution to a large US airline in premium seat upsell.