About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Knowledge and Data Engineering
Paper
Cost-based predictive spatiotemporal join
Abstract
A predictive spatiotemporal join finds all pairs of moving objects satisfying a join condition on future time and space. In this paper, we present CoPST, the first and foremost algorithm for such a join using two spatiotemporal indexes. In a predictive spatiotemporal join, the bounding boxes of the outer index are used to perform window searches on the inner index, and these bounding boxes enclose objects with increasing laxity over time. CoPST constructs globally tightened bounding boxes "on the fly" to perform window searches during join processing, thus significantly minimizing overlap and improving the join performance. CoPST adapts gracefully to large-scale databases, by dynamically switching between main-memory buffering and disk-based buffering, through a novel probabilistic cost model. Our extensive experiments validate the cost model and show its accuracy for realistic data sets. We also showcase the superiority of CoPST over algorithms adapted from state-of-the-art spatial join algorithms, by a speedup of up to an order of magnitude. © 2009 IEEE.