About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DCC 2011
Conference paper
Conflict in distributed hypothesis testing with quantized prior probabilities
Abstract
The effect of quantization of prior probabilities in a collection of distributed Bayesian binary hypothesis testing problems over which the priors themselves vary is studied, with focus on conflicting agents. Conflict arises from differences in Bayes costs, even when all agents desire correct decisions and agree on the meaning of correct. In a setting with fusion of local binary decisions by majority rule, Nash equilibrium local decision strategies are found. Assuming that agents follow Nash equilibrium decision strategies, designing quantizers for prior probabilities becomes a strategic form game, we discuss its Nash equilibria. We also propose two different constrained quantizer design games, find Nash equilibrium quantizer designs, and compare performance. The system has deadweight loss: equilibrium decisions are not Pareto optimal. © 2011 IEEE.