About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Multilevel minimax hypothesis testing
Abstract
In signal detection, Bayesian hypothesis testing and minimax hypothesis testing represent two extremes in the knowledge of the prior probabilities of the hypotheses: full information and no information. We propose an intermediate formulation, also based on the likelihood ratio test, to allow for partial information. We partition the space of prior probabilities into a set of levels using a quantization-theoretic approach with a minimax Bayes risk error criterion. Within each prior probability level, an optimal representative probability value is found, which is used to set the threshold of the likelihood ratio test. The formulation is demonstrated on signals with additive Gaussian noise. © 2011 IEEE.
Related
Conference paper
Unassisted true analog neural network training chip
Conference paper