Configurable hardware-based streaming architecture using Online Programmable-Blocks
Abstract
The limitations of traditional general-purpose processors have motivated the use of specialized hardware solutions (e.g., FPGAs) to achieve higher performance in stream processing. However, state-of-the-art hardware-only solutions have limited support to adapt to changes in the query workload. In this work, we present a reconfigurable hardware-based streaming architecture that offers the flexibility to accept new queries and to change existing ones without the need for expensive hardware reconfiguration. We introduce the Online Programmable Block (OP-Block), a "Lego-like" connectable stream processing element, for constructing a custom Flexible Query Processor (FQP), suitable to a wide range of data streaming applications, including real-time data analytics, information filtering, intrusion detection, algorithmic trading, targeted advertising, and complex event processing. Through evaluations, we conclude that updating OP-Blocks to support new queries takes on the order of nano to micro-seconds (e.g., 40 ns to realize a join operator on an OP-Block), a feature critical to support of streaming applications on FPGAs.