About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Concurrent coupling of length scales: methodology and application
Abstract
A strategic objective of computational materials physics is the accurate description of specific materials on length scales approaching the meso and macroscopic. We report on progress towards this goal by describing a seamless coupling of continuum to statistical to quantum mechanics, involving an algorithm, implemented on a parallel computer, for handshaking between finite elements, molecular dynamics, and semiempirical tight binding. We illustrate and validate the methodology using the example of crack propagation in silicon. © 1999 The American Physical Society.