About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDMW 2016
Conference paper
Cognito: Automated Feature Engineering for Supervised Learning
Abstract
Feature engineering involves constructing novel features from given data with the goal of improving predictive learning performance. Feature engineering is predominantly a human-intensive and time consuming step that is central to the data science workflow. In this paper, we present a novel system called 'Cognito', that performs automatic feature engineering on a given dataset for supervised learning. The system explores various feature construction choices in a hierarchical and non-exhaustive manner, while progressively maximizing the accuracy of the model through a greedy exploration strategy. Additionally, the system allows users to specify domain or data specific choices to prioritize the exploration. Cognito is capable of handling large datasets through sampling and built-in parallelism, and integrates well with a state-of-The-Art model selection strategy. We present the design and operation of Cognito, along with experimental results on eight real datasets to demonstrate its efficacy.