About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Symposium on VLSI Technology, Systems, and Applications, Proceedings
Paper
CMOS scaling beyond 0.1 μm: how far can it go?
Abstract
This paper discusses the issues, challenges, and possible directions for further scaling and performance gains beyond 0.1 μm CMOS. Gate oxides, already down to a few atomic layers thick, will soon be limited by tunneling currents to a thickness of 15-20 angstrom. A general guideline, based on 2-D effects in MOSFETs, is given for the length scaling of high-k gate dielectrics. A feasible design for 25 nm bulk CMOS is to use a highly abrupt, vertically and laterally nonuniform doping profile to control the short-channel effect. The effect of polysilicon-gate depletion on the performance of 25 nm CMOS is examined and quantified. Beyond conventional CMOS, the question whether any of the exploratory device structures, including ultra-thin SOI and double-gate MOSFET, can extend CMOS scaling to 10 nm channel length is addressed.