Charge transport through a cardan-joint molecule

View publication


The charge transport through a single ruthenium atom clamped by two terpyridine hinges is investigated, both experimentally and theoretically. The metal-bis(terpyridyl) core is equipped with rigid, conjugated linkers of para-acetyl-mercapto phenylacetylene to establish electrical contact in a two-terminal configuration using Au electrodes. The structure of the [Ru II(L)2](PF6)2 molecule is determined using single-crystal X-ray crystallography, which yields good agreement with calculations based on density functional theory (DFT). By means of the mechanically controllable break-junction technique, current-voltage (I-V), characteristics of [RuII(L)2](PF6)2 are acquired on a single-molecule level under ultra-high vacuum (UHV) conditions at various temperatures. These results are compared to ab initio transport calculations based on DFT. The simulations show that the cardan-joint structural element of the molecule controls the magnitude of the current. Moreover, the fluctuations in the cardan angle leave the positions of steps in the I-V curve largely invariant. As a consequence, the experimental I-V characteristics exhibit lowest-unoccupied-molecular-orbit-based conductance peaks at particular voltages, which are also found to be temperature independent. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.