Publication
Review of Scientific Instruments
Paper

Characterization, modeling, and design of an electrostatic chuck with improved wafer temperature uniformity

View publication

Abstract

The resulting temperature distribution of a silicon wafer held by an electrostatic chuck (ESC) in an electron-cyclotron-resonance chemical vapor deposition (ECR-CVD) reactor is characterized and modeled. The effects of the clamping voltage VESC, pressure between the ESC and wafer P He, and the surface finish and pattern on the ESC are investigated. Heat transfer coefficients between the wafer and various ESCs are determined experimentally. A model is developed to predict the temperature distribution at the surface of the wafer, and used to explain the experimentally observed temperature variations both within wafer and between different chucks. The model is then used to aid in the design of an ESC which provides improved temperature uniformity at the wafer surface. The results of this study indicate: (a) the thermal resistances across the interface between the wafer and ESC control both the absolute wafer temperature and the wafer temperature uniformity; (b) the surface roughness of the ESC and the size of the ''contact'' regions are major design factors controlling the absolute temperature of the wafer - the temperature can be adjusted by varying the value of VESC and fine tuned by adjusting the value of PHe; (c) the nonuniform temperature distribution across the wafer surface is dictated by the surface pattern on the ESC, the variation in surface roughness, and the size of the ESC relative to the wafer; (d) wafer temperature variations from chuck to chuck are reduced by controlling the surface finish of the ESC and by ensuring that PHe is a dominant heat transfer mechanism; and (e) maximum uniformity in the temperature of the wafer is obtained when the radius of the ESC is matched as closely as possible to that of the wafer. We have shown that numerical heat transfer models can be used to optimize the geometry of the ESC to provide a uniform distribution of temperature across the surface of the wafer. © 1995 American Institute of Physics.