About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PODC 2012
Conference paper
Brief announcement: Reconfigurable state machine replication from non-reconfigurable building blocks
Abstract
Reconfigurable state machine replication is an important enabler of elasticity for replicated cloud services, which must be able to dynamically adjust their size as a function of changing load and resource availability. We introduce a new generic framework to allow the reconfigurable state machine implementation to be derived from a collection of arbitrary non-reconfigurable state machines. Our reduction framework follows the black box approach, and does not make any assumptions with respect to its execution environment apart from reliable channels. It allows higher-level services to leverage speculative command execution to ensure uninterrupted progress during the reconfiguration periods as well as in situations where failures prevent the reconfiguration agreement from being reached in a timely fashion. We apply our framework to obtain a reconfigurable speculative state machine from the non-reconfigurable Paxos implementation, and analyze its performance on a realistic distributed testbed. Our results show that our framework incurs negligible overheads in the absence of reconfiguration, and allows steady throughput to be maintained throughout the reconfiguration periods. © 2012 Authors.