About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Breakdown of Barkhausen critical-scaling behavior with increasing domain-wall pinning in ferromagnetic films
Abstract
We report a breakdown of Barkhausen critical-scaling behavior in NiO/Fe films with increasing domain-wall pinning by means of a Kerr microscope capable of direct domain observation. The time-resolved domain images in the films revealed that the Barkhausen jump size is generally decreased with increasing NiO thickness, showing an enhanced domain-wall pinning effect. Interestingly enough, the power-law scaling behavior of the Barkhausen jump size distribution gradually disappears as pinning of domain walls in the Fe layer is increased. This is ascribed to the fact that the magnetization reversal mechanism is changed from a Barkhausen avalanche dominant mode to domain-wall creep dominant mode. © 2011 American Physical Society.