About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Band offsets for strained InxGa1-xAs/AlyGa1-yAs heterointerfaces
Abstract
Valence-band offsets for pseudomorphically strained InxGa1-xAs/AlyGa1-yAs ternary-on-ternary heterointerfaces have been calculated as a function of both indium and aluminum content. The unstrained valence-band offsets were considered within the virtual-crystal approximation, accounting for band parabolicity and alloy mixing. Strain was introduced as a perturbation with composition-dependent material parameters, and is shown to strongly influence the valence-band offsets. Equivalent conduction-band-offset ratios are shown to be nonconstant and extremely variable as a function of both In and Al content and are compared to recent experimental data. Various formalisms to calculate the partitioning coefficient for hydrostatic band-gap deformation are presented and discussed, and our analysis indicates that a significant portion of the band-gap variation induced by hydrostatic strain resides in the valence band. Investigation of the spin-split light-hole band level under strain indicates that both type-I and type-II heterointerfaces are achievable with an appropriate choice of compositions. © 1990 The American Physical Society.