About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDH 2023
Conference paper
Balance Measures Derived from Insole Sensor Differentiate Prodromal Dementia with Lewy Bodies
Abstract
Dementia with Lewy bodies is the second most common type of neurodegenerative dementia, and identification at the prodromal stage - i.e., mild cognitive impairment due to Lewy bodies (MCI-LB) - is important for providing appropriate care. However, MCI-LB is often underrecognized because of its diversity in clinical manifestations and similarities with other conditions such as mild cognitive impairment due to Alzheimer's disease (MCI-AD). In this study, we propose a machine learning-based automatic pipeline that helps identify MCI-LB by exploiting balance measures acquired with an insole sensor during a 30-s standing task. An experiment with 98 participants (14 MCI-LB, 38 MCI-AD, 46 cognitively normal) showed that the resultant models could discriminate MCI-LB from the other groups with up to 78.0% accuracy (AUC: 0.681), which was 6.8% better than the accuracy of a reference model based on demographic and clinical neuropsychological measures. Our findings may open up a new approach for timely identification of MCI-LB, enabling better care for patients.