About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2019
Conference paper
Average-case averages: Private algorithms for smooth sensitivity and mean estimation
Abstract
The simplest and most widely applied method for guaranteeing differential privacy is to add instance-independent noise to a statistic of interest that is scaled to its global sensitivity. However, global sensitivity is a worst-case notion that is often too conservative for realized dataset instances. We provide methods for scaling noise in an instance-dependent way and demonstrate that they provide greater accuracy under average-case distributional assumptions. Specifically, we consider the basic problem of privately estimating the mean of a real distribution from i.i.d. samples. The standard empirical mean estimator can have arbitrarily-high global sensitivity. We propose the trimmed mean estimator, which interpolates between the mean and the median, as a way of attaining much lower sensitivity on average while losing very little in terms of statistical accuracy. To privately estimate the trimmed mean, we revisit the smooth sensitivity framework of Nissim, Raskhodnikova, and Smith (STOC 2007), which provides a framework for using instance-dependent sensitivity. We propose three new additive noise distributions which provide concentrated differential privacy when scaled to smooth sensitivity. We provide theoretical and experimental evidence showing that our noise distributions compare favorably to others in the literature, in particular, when applied to the mean estimation problem.