About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2019
Conference paper
Imitation learning from observations by minimizing inverse dynamics disagreement
Abstract
This paper studies Learning from Observations (LfO) for imitation learning with access to state-only demonstrations. In contrast to Learning from Demonstration (LfD) that involves both action and state supervision, LfO is more practical in leveraging previously inapplicable resources (e.g. videos), yet more challenging due to the incomplete expert guidance. In this paper, we investigate LfO and its difference with LfD in both theoretical and practical perspectives. We first prove that the gap between LfD and LfO actually lies in the disagreement of inverse dynamics models between the imitator and the expert, if following the modeling approach of GAIL [15]. More importantly, the upper bound of this gap is revealed by a negative causal entropy which can be minimized in a model-free way. We term our method as Inverse-Dynamics-Disagreement-Minimization (IDDM) which enhances the conventional LfO method through further bridging the gap to LfD. Considerable empirical results on challenging benchmarks indicate that our method attains consistent improvements over other LfO counterparts.