About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ArgMining/NAACL-HLT 2015
Conference paper
Automatic Claim Negation: Why, How and When
Abstract
The main goal of argumentation mining is to analyze argumentative structures within an argument-rich document, and reason about their composition. Recently, there is also interest in the task of simply detecting claims (sometimes called conclusion) in general documents. In this work we ask how this set of detected claims can be augmented further, by adding to it the negation of each detected claim. This presents two NLP problems: how to automatically negate a claim, and when such a negated claim can plausibly be used. We present first steps into solving both these problems, using a rule-based approach for the former and a statistical one towards the latter.