About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
STOC 2012
Conference paper
Approximation algorithms for semi-random partitioning problems
Abstract
In this paper, we propose and study a new semi-random model for graph partitioning problems. We believe that it captures many properties of real-world instances. The model is more flexible than the semi-random model of Feige and Kilian and planted random model of Bui, Chaudhuri, Leighton and Sipser. We develop a general framework for solving semi-random instances and apply it to several problems of interest. We present constant factor bi-criteria approximation algorithms for semi-random instances of the Balanced Cut, Multicut, Min Uncut, Sparsest Cut and Small Set Expansion problems. We also show how to almost recover the optimal solution if the instance satisfies an additional expanding condition. Our algorithms work in a wider range of parameters than most algorithms for previously studied random and semi-random models. Additionally, we study a new planted algebraic expander model and develop constant factor bi-criteria approximation algorithms for graph partitioning problems in this model. © 2012 ACM.