About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Analog Resistive Switching Devices for Training Deep Neural Networks with the Novel Tiki-Taka Algorithm
Abstract
A critical bottleneck for the training of large neural networks (NNs) is communication with off-chip memory. A promising mitigation effort consists of integrating crossbar arrays of analogue memories in the Back-End-Of-Line, to store the NN parameters and efficiently perform the required synaptic operations. The “Tiki-Taka” algorithm was developed to facilitate NN training in the presence of device nonidealities. However, so far, a resistive switching device exhibiting all the fundamental Tiki-Taka requirements, which are many programmable states, a centered symmetry point, and low programming noise, was not yet demonstrated. Here, a complementary metal-oxide semiconductor (CMOS)-compatible resistive random access memory (RRAM), showing more than 30 programmable states with low noise and a symmetry point with only 5% skew from the center, is presented for the first time. These results enable generalization of Tiki-Taka training from small fully connected networks to larger long-/short-term-memory types of NN.