About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ASPLOS 2012
Conference paper
An update-aware storage system for low-locality update-intensive workloads
Abstract
Traditional storage systems provide a simple read/write interface, which is inadequate for low-locality update-intensive workloads because it limits the disk scheduling flexibility and results in inefficient use of buffer memory and raw disk bandwidth. This paper describes an update-aware disk access interface that allows applications to explicitly specify disk update requests and associate with such requests call-back functions that will be invoked when the requested disk blocks are brought into memory. Because call-back functions offer a continuation mechanism after retrieval of requested blocks, storage systems supporting this interface are given more flexibility in scheduling pending disk update requests. In particular, this interface enables a simple but effective technique called Batching mOdifications with Sequential Commit (BOSC), which greatly improves the sustained throughput of a storage system under low-locality update-intensive workloads. In addition, together with a space-efficient low-latency disk logging technique, BOSC is able to deliver the same durability guarantee as synchronous disk updates. Empirical measurements show that the random update throughput of a BOSC-based B+ tree is more than an order of magnitude higher than that of the same B+ tree implementation on a traditional storage system. © 2012 ACM.