About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SYSTOR 2022
Poster
An End-to-end Framework for Privacy Risk Assessment of AI Models
Abstract
We present a first-of-a-kind end-to-end framework for run- ning privacy risk assessments of AI models that enables assessing models from multiple ML frameworks, using a variety of low-level privacy attacks and metrics. The tool automatically selects which attacks and metrics to run based on answers to questions, runs the attacks, summarizes and visualizes the results in an easy-to-consume manner.