About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
The coding theory of rotations (by inspecting closely their relation to flows) and the continued fractions algorithm (by considering even two-coloring of the integers with a given proportion of, say, blue and red) are revisited. Then, even n-coloring of the integers is defined. This allows one to code rotations on the (n - 1)-torus by considering linear flows on the n-torus and yields a simple geometric approach to renormalization on tori by first return maps on the coding regions. © 1991 American Institute of Physics.