About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Operations Research
Paper
A Lyapunov Theory for Finite-Sample Guarantees of Markovian Stochastic Approximation
Abstract
This paper develops a unified Lyapunov framework for finite-sample analysis of a Markovian stochastic approximation (SA) algorithm under a contraction operator with respect to an arbitrary norm. The main novelty lies in the construction of a valid Lyapunov function called the generalized Moreau envelope. The smoothness and an approximation property of the generalized Moreau envelope enable us to derive a one-step Lyapunov drift inequality, which is the key to establishing the finite-sample bounds. Our SA result has wide applications, especially in the context of reinforcement learning (RL). Specifically, we show that a large class of value-based RL algorithms can be modeled in the exact form of our Markovian SA algorithm. Therefore, our SA results immediately imply finite-sample guarantees for popular RL algorithms such as n-step temporal difference (TD) learning, TD(λ), off-policy V-trace, and Q-learning. As byproducts, by analyzing the convergence bounds of n-step TD and TD(λ), we provide theoretical insight into the problem about the efficiency of bootstrapping. Moreover, our finite-sample bounds of off-policy Vtrace explicitly capture the tradeoff between the variance of the stochastic iterates and the bias in the limit.