About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2025
Workshop paper
A General Control-Theoretic Approach for Reinforcement Learning: Theory and Algorithms
Abstract
We devise a control-theoretic reinforcement learning approach to support direct learning of the optimal policy. We establish various theoretical properties of our approach, such as convergence and optimality of our analog of the Bellman operator and Q-learning, a new control-policy-variable gradient theorem, and a specific gradient ascent algorithm based on this theorem within the context of a specific control-theoretic framework. We empirically evaluate the performance of our control-theoretic approach on several classical reinforcement learning tasks, demonstrating significant improvements in solution quality, sample complexity, and running time of our approach over state-of-the-art methods.