About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FPGA 2012
Conference paper
A cycle-accurate, cycle-reproducible multi-FPGA system for accelerating multi-core processor simulation
Abstract
Software based tools for simulation are not keeping up with the demands for increased chip and system design complexity. In this paper, we describe a cycle-accurate and cycle-reproducible large-scale FPGA platform that is designed from the ground up to accelerate logic verification of the Bluegene/Q compute node ASIC, a multi-processor SOC implemented in IBM's 45 nm SOI CMOS technology. This paper discusses the challenges for constructing such large-scale FPGA platforms, including design partitioning, clocking & synchronization, and debugging support, as well as our approach for addressing these challenges without sacrificing cycle accuracy and cycle reproducibility. The resulting fullchip simulation of the Bluegene/Q compute node ASIC runs at a simulated processor clock speed of 4 MHz, over 100,000 times faster than the logic level software simulation of the same design. The vast increase in simulation speed provides a new capability in the design cycle that proved to be instrumental in logic verification as well as early software development and performance validation for Bluegene/Q. © 2012 ACM.