About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Journal of Solid-State Circuits
Paper
A clock distribution network for microprocessors
Abstract
A global clock distribution strategy used on several microprocessor chips is described. The clock network consists of buffered tunable trees or treelike networks, with the final level of trees all driving a single common grid covering most of the chip. This topology combines advantages of both trees and grids. A new tuning method was required to efficiently tune such a large strongly connected interconnect network consisting of up to 6 m of wire and modeled with 50 000 resistors, capacitors, and inductors. Variations are described to handle different floor-planning styles. Global clock skew as low as 22 ps on large microprocessor chips has been measured.